
Visual Question Answering

A Thesis submitted in partial fulfillment of

the requirements for the degree of

Bachelor of Technology

by

Vatsal Goel Mohit Chandak
160108018 160108026

Under the guidance of

Dr. Prithwijit Guha
and

Dr. Ashish Anand

DEPARTMENT OF ELECTRONICS & ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

June 2020



© Copyright by Vatsal Goel and Mohit Chandak, June 2020

All Rights Reserved



Abstract

Artificial Intelligence has been a hotspot of research for the past couple of decades. After

the advent of progress in Deep Learning, research in the fields of Computer Vision, Natural

Language Processing, Reasoning, and Causality has increased dramatically. Multidisciplinary

research is considered as a leap into the era of AGI, Artificial General Intelligence. In one such

attempt, a novel Image Understanding task was proposed to combine progress in Computer

Vision and Natural Language Processing, and hence stimulate further developments in both

disciplines.

Visual Question Answering takes an image and a question about that image, and produces

an answer. The involvement of both Computer Vision and Natural Language Processing makes

this task even more exciting and challenging. Even though there has been tremendous progress

in the field of Visual Question Answering, models today still tend to learn from language biases

in the dataset leading to inconsistent performance. To this end, we propose a model-independent

cyclic framework which increases consistency of any VQA architecture. We train our models

to answer the original question, generate an implication based on the answer and then also

learn to answer the generated implication correctly. As a part of the cyclic framework, we

propose a novel implication generator which can generate implied questions from any question-

answer pair. As a baseline for future works on consistency, we provide a new annotated VQA-

Implications dataset. The dataset consists of ~30k questions containing implications of 3 types

- Logical Equivalence, Necessary Condition and Mutual Exclusion - made from the VQA v2.0

validation dataset. We show that our framework improves consistency of VQA models by ~15%

on the rule-based dataset and ~7% on the VQA-Implications dataset, without degrading their

accuracy.
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Chapter 1

Introduction

Computer Vision seeks to develop systems to process and understand visual inputs i.e. images.

On the other hand, NLP revolves around increasing interactions between humans and machines

in a natural language. Historically, these areas of research have gone through separate devel-

opment, which makes this marriage even more significant. Image Understanding is an integral

part of Computer Vision. Being able to extract useful information by looking at an image has

numerous applications such as examining CCTV footage, identifying art forgeries and so on. In

this regard, a novel Image Understanding task was developed at Georgia Tech in 2015 - Visual

Question Answering [15].

The Visual Question Answering(VQA) task consists of an image and a contextual natu-

ral language question as input and an answer to that question as output. The questions vary

from different attributes of the objects in the image to actions and background details. As a

result, VQA differs comprehensively from caption generating tasks. In contrast to most com-

puter vision tasks, including image segmentation and object recognition, where a predetermined

question is asked for different input images, VQA needs to answer questions determined during

runtime. In this sense, VQA requires a more general understanding of an image and hence, a

challenging task to learn.

As evident from figure 1.1, open-ended questions require vast areas of AI expertise. Ob-

ject detection (e.g., ”Is there any bike ?”), object recognition (e.g., ”What is the mustache

made of?”), object localization (e.g., ”What is just under the trees?”), inference derivation (e.g.,

”Is this person expecting company?”) and general knowledge reasoning (e.g. ”Does this per-

son have 20/20 vision?”). Answers to these questions lie in a spectrum ranging from simple

”yes/no” to ”numbers” and even ”colors.” Most of the answers can be modeled as a multiple-
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Figure 1.1: Few Inputs in Visual Question Answering(VQA) task [15]

choice task. Hence, it requires the AI to select between a predefined list of answers.

The authors of [15] also presented a large dataset along with a strong baseline model on

the same. The dataset consists of 204,721 real images from the MS COCO dataset and 50000

scenes from a synthetic dataset. VQA Dataset contains at least three questions per image with

ten answers per question, which sums to 760K questions and over 10M answers in total. The

massive size of this dataset provides enough data for the task in hand.

Baselines for VQA include random selection, nearest neighbor, and deep learning-based

models. For deep learning-based methods, they modeled this task as a classification over 1000

classes. Best performing models consist of 2 parallel channels for vision (image) and language

(question) with few fully connected layers at the end. Image channel provides image embed-

dings in the latent dimension using VGGNet, a deep convolution-based architecture. Whereas

LSTM based encoder is used for question embeddings. These two separately computed em-

beddings are merged via pointwise multiplication before passing on to fully connected layers.

These models were able to outperform both the vision-alone and language-alone baselines with

overall accuracies of 58.16% and 63.09% respectively for open-ended and multiple-choice ques-

tions. However, these baselines performed significantly worse than human-level understanding,

thereby giving enormous growth potential to this area of research.
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(a) Input image

Original ’What color is the frisbee?’ white

LogEq ’Is the frisbee white?’ no

Mutex ’Is the frisbee black?’ yes

Nec ’Is there anything white?’ no

(b) Implications answered incorrectly

Figure 1.2: Example of inconsistency in VQA models

Ideally, a VQA system should be equipped with the ability to extract useful information

(with reference to the question) by looking at the image. To answer these questions correctly,

the system should not only identify the color, size, or shape of objects, but may also require

general knowledge and reasoning abilities.

Previous works [9, 10] have pointed out the strong language prior present in the VQA

dataset. This could result in false impression of good performance by many state-of-the-art

models, without them actually understanding the image. For instance, answering any question

starting with ”What sport is” by ”tennis” results in 41% accuracy. Moreover, citing the ’visual

priming bias’ present in the VQA datset, questions starting with ”Do you see a ..” result in ”yes”

87% of the time.

Many recent works [11,13,14] have shown that despite having high accuracy on questions

present in the dataset, these models perform poorly when similar questions are asked and hence

are not robust enough to be deployed in the real world. Fig 1.2 shows the inconsistent nature

of VQA models. Despite answering the original question correctly, the model fails to answer

questions which are implied by the original question answer pair. This shows that models learn

from language biases in the dataset rather than correctly understanding the context of the image.

The inconsistency problem is shown in Fig 1.2. Even though the model [2] correctly answers

the original question, it fails to answer any of the 3 generated implications correctly.

We believe that any model can be taught to unlearn these language priors and better un-

derstand the content of the image by enforcing consistency among the predicted answers. In

this paper, we present and demonstrate a cyclic training scheme to solve the above mentioned

problem of inconsistency. Our framework is model independent and can be integrated with

any VQA architecture. The framework consists of a generic VQA module and our implication
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generation module tailored especially for this task.

Our framework ensures consistent behaviour of VQA module while answering different

questions on the same image. This is achieved in two steps: Implication generator module

introduces linguistic variations in the original question based on the answer predicted by the

VQA model. Then, the model is again asked to answer this on-the-fly generated question such

that it remains consistent with the previously predicted answer. Thus, the VQA architecture is

collectively trained to answer questions and their implications correctly. Using the rule-based

approach in [11], we calculate the consistency of different state of the art models and show

that our framework significantly improves consistency without harming the performance of the

VQA model.

We observe that there is no benchmark for consistency, which perhaps is the reason for

limited development in this area. Hence, to promote robust and consistent VQA models in the

future we collect a human annotated dataset of around 30k questions on the original VQA v2.0

validation dataset.

In later chapters, we demonstrate the quality of these generated questions. We provide a

baseline of our implication generator module for future works to compare with. We also perform

a comparative study of the attention maps of models trained with our framework to those of

baselines. We observe significant improvement in the quality of these attention maps. This

proves that by learning on these variations, our framework not only improves the consistency of

any generic VQA model but also achieves a stronger multi modal understanding of vision and

language.

To summarize, our main contributions in this thesis are as follows -

• We propose a model independent cyclic framework which improves consistency of any

given VQA architecture without degrading the architecture’s original validation accuracy.

• We propose a novel implication generator module, which can generate implications G :

(Q,A) −→ Qimp, for any given question answer pair.

• For future evaluation of consistency, we provide a new VQA-Implication dataset. The

dataset consists of ~30k questions containing implications of 3 types - Logical Equiva-

lence, Necessary Condition and Mutual Exclusion.
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Chapter 2

Literature

Like any other new challenge, when VQA was launched, there was a lot of excitement in the

vision community. The developer team also started an annual VQA challenge where teams from

all over the years could compete and achieve better results. During the first 2-3 years, everyone

focused on beating the state-of-the-art results. People came up with very complex attention

mechanisms that concentrated on a particular region of the image as asked in the question.

In this chapter, we shall discuss how the VQA task has progressed over the years. More

specifically, we will discuss some of the techniques and mechanisms which have been employed

for best results, the changes in the VQA dataset and the more recent findings and progressions

of the vision community in this field.

2.1 Deep Learning based VQA methods

When VQA was born, the main challenge was combining the image and feature vectors. With

high accuracy feature extraction models like ResNet50 already in place, combining the features

accurately was of utmost importance. Some of the models which achieved the then state-of-the-

art results include [16–20].

2014 2020

2015

VQA

2016

VQA 2.0

Stacked Attention Networks

2017

Teney et.al

2018

Pythia

Bilinear Attention Networks

2019

LXMERT



2.1.1 Stacked Attention Networks

Hierarchical Co-attention (HieCoAtt) [21]

In this attention-based VQA model, both the image and the question were co-attended to predict

an answer. Specifically, it hierarchically separated the question: at the word-level, phrase-level,

and entire question-level. Using image features, it then created image-question co-attention

maps at all three levels. These features were then combined recursively to get the final output.

Multimodal Compact Bilinear Pooling (MCB) [16]

This model won the VQA challenge in 2016. It used multimodal compact bilinear pooling

to combine the image and feature vectors and then passed it through fully connected layers

to produce output. Also, this model employed ResNet to extract image features whereas the

previous models used VGGNet.

2.1.2 Teney et. al [1]

This model employs a Joint embedding approach to achieve state-of-art results in the 2017

VQA Challenge. This relatively simple deep neural network architecture is carefully selected

for performing on the VQA v2 benchmark [9]. While this approach is derivative of many

general VQA methods, key technical innovations have greatly enhanced the performance. It

implements joint RNN/R-CNN embedding of question/image with image-attention guided by

the question.

The questions are tokenized and then vectorized to give 14x300-dimensional vectors.

These vectors are initialized with GloV e word embeddings for better performance. These re-

sulting embeddings are then passed through GRU. The image input is passed through ResNet

CNN within a Faster R-CNN framework to obtain a Kx2048 sized vector for K image locations.

V isualGenome dataset is used to pre-train and extract top-K objects in the images during the

preprocessing step. Top-down attention is used as a question-guided attention mechanism. For

each location in the image, attention weight is calculated by passing the concatenated question

and image embeddings through a nonlinear layer. After applying attention to the image, the

element-wise product is taken to fuse these two modalities. Treating VQA as a multi-label clas-

sification task, they used sigmoid for each class instead of softmax. Cross-entropy loss between

soft ground-truth targets and these predicted scores provides richer training signals than binary
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outputs. Smart shuffling of data during training and the use of larger mini-batches enhanced the

model further.

Figure 2.1: Model overview for Teney et. al [1]

2.1.3 Pythia v0.1 [2]

This model was the winning entry of the 2018 VQA challenge. The overall structure of the

model was the same as that of Tenny et. al with minor changes in activation functions to

fine-tune features. Moreover, they used ensemble learning over 30 models trained on different

datasets.

2.1.4 Bilinear Attention Networks [3]

To reduce the computational cost of learning attention distributions, the authors of [3] proposed

Bilinear Attention Networks, whereby different attention maps are built for each modality. Fur-

ther, low-rank bilinear pooling extracts the joint representations for each pair of channels. Struc-

ture of a two-glimpse BAN is illustrated in fig 2.2

Figure 2.2: Overview of two-glimpse BAN [3]
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2.1.5 LXMERT [4]

Based on recent developments in NLP, transformers are now becoming the standard for se-

quential data models overtaking LSTMs in accuracy. The LXMERT (Learning Cross-Modality

Encoder Representations from Transformers) framework is built upon this idea. It uses three en-

coders - Object Relationship Encoder, Language Encoder and Cross Modality Encoder. LXMERT

is the current state-of-the-art model in VQA with a test accuracy of 72.5%. The model archite-

cure of LXMERT is shown in Fig [4].

Figure 2.3: LXMERT Architecture [4]

The results of all the above-listed models are summarized and listed in the table 2.1.

Model Method Accuracy (in %) Venue

VQA-baseline [15] LSTM+CNN 57.75 ICCV 2015

HieCoAtt [21] Hierarchical Attention 62.1 NIPS 2016

MCB [16] Bilinear attention 64.2 CVPR 2016

Teney et. al [1] FasterRCNN+GloVe 63.15(VQA-v2) CVPR 2018

Pythia v0.1 [2] [1]+ensemble 72.27(VQA-v2) VQA challenge 2018

BAN [3] Residual attention 70.04(VQA-v2) NIPS 2018

LXMERT [4] Transformers 72.50(VQA-v2) EMNLP 2019

Table 2.1: Summary of deep learning models in VQA
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2.2 Variations in VQA

Over the years, VQA models have become increasingly complex, employing convoluted atten-

tion mechanisms. Apart from a focus on attention maps, people have also used extra informa-

tion such as generating image captions. Furthermore, derivatives of the original VQA task have

emerged in recent years. In this section, we shall discuss a few such variations and techniques

which played a crucial part in our problem formulation.

2.2.1 VQA with Explanations [5]

This paper introduced the task of generating relevant explanations for the given answers by the

model. To this extent, they first introduced a new dataset VQA-E which contained explanations

along with the answers. The dataset is derived from the VQA v2 dataset and uses image captions

as explanations for the questions.

Figure 2.4: Overview of VQA-E task [5]

In the past, there was a lot of speculation that deep learning models learn based on statis-

tical bias instead of looking at the image, and this affected accuracy adversely. Using explana-

tions along with answers helped resolve this bias as irrelevant explanations to the question are

awarded negatively in this model.

To generate the explanations for the VQA-E dataset, the authors first combined the ques-

tion answer pair (Q,A) to form a statement S. They also used a caption generator to get a

caption C. Then S and C were fused using constituency trees to get an explanation E. Due to
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a diverse set of questions, generating good reasons for all questions was not possible. To tackle

this problem, the authors removed the questions from the dataset for which good explanations

weren’t produced.

The authors also proposed a basic model which uses a simple attention mechanism and

LSTM cells to generate captions. They trained their model on the VQA-E dataset and reported

results that will be used as a baseline for future work.

2.2.2 Captions to aid VQA [6]

In this paper, the authors first generated captions for the image and then used those captions to

fine-tune their VQA model to achieve better results. Caption embeddings were utilized to adjust

the visual top-down attention weights for each object. The important distinguishing feature of

this paper was that they used attention mechanisms on not only the image but also the caption,

i.e. more weight was given to the words which helped in answering the question.

Figure 2.5: An illustration of adjustment using caption attention [6]

The grey-scale levels in fig 2.6 show the weights of the words in the captions. In fig 2.5

the question-relevant caption helps the VQA module to focus on the yellow board only.

2.2.3 VQG: Generating Natural Questions About an Image [7]

Moving beyond describing the content of images, this paper introduced the task of generating a

natural and engaging question given any image. They believe that learning to ask questions is

essential for any AI to master. Learning to ask the right question shows a deeper understanding

of image and general reasoning over knowledge. Learning this ability has many applications in

conversational systems to interactive environments.
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Figure 2.6: Examples of generated question-relevant captions [6]

Questions generated under this task should be verifiable visually. The key idea is to start

a conversation with a human, So questions which can be answered by merely looking at the

image are not of interest for this task. Fig 2.7 demonstrates the scope of questions in this task.

Figure 2.7: Example right and wrong questions for VQG [7]

To this end, they provided questions for three datasets: MSCOCO, Flickr, and Bing. In

total, 15000 images with 75000 questions covering a wide range of visual events. 5000 images

from each dataset are picked and five questions per image were collected by crowdsourcing on

Amazon Mechanical Turk.

They proposed several generative and retrieval models to tackle this complex problem. For

generative models, best results were obtained using an end-to-end deep learning based method

previously used for image captioning. The model consists of an image encoder network using

VGG architecture, followed by several fully connected layers. The transformed output serves

as an initial state to a Gated Recurrent Unit (GRU). Overall, questions are produced one word

11



Figure 2.8: Generative Model for VQG [7]

at a time until the EOS token.

Retrieval models were customized for this task to make use of the caption of K-nearest

neighbor in the training set. Questions with the highest semantic similarity among K selected

neighbors are selected as the output. Although human evaluation is an ideal way to deal with

such ill-posed problems, they also proposed metric-based methods to benchmark the progress.

2.2.4 iVQA: Inverse Visual Question Answering [8]

Deriving motivation from [7], this paper proposed the inverse problem for Visual Question An-

swering (iVQA), which is to infer a question Q for which a given answer A holds, in context of

an image I . This work differs from VQG in the sense that the generated question is conditioned

on the answer. By doing so, iVQA aims to produce more relevant questions.

Figure 2.9: (a) Illustration of iVQA task (b) Architecture for iVQA model [8]

Fig 2.9a demonstrate a typical example of iVQA. Input to the model is an image (Sand-

wich and Baseball) and answers (foil, Yes, and No). This task expects to generate questions like

”What is the sandwich laying on?” (foil), ”Is the boy wearing a hat?” (Yes), which enhances im-

age understanding and provide opportunities for much more complex tasks like counterfactual
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reasoning.

The authors of [8] proposed a deep neural network for iVQA. The model architecture is

shown in fig 2.9b. It consists of three sub-networks to tackle different modalities - an answer

encoder to encode answer into a latent vector, an image encoder for image embeddings, and a

question decoder to generate the output question, one word at a time. Novelties in this architec-

ture include the proposed Dynamic multimodal attention for question decoding. At each time

step, given the partially encoded question, answer and image embeddings, this attention model

learns to focus on a region of the image, critical for this step. Based on these attended image

and answer features, this model predicts the next word.

Moreover, this study proposed a new ranking-based metric for evaluating iVQA. The con-

ditioning score p(q|I, a; θ) used for ranking is related to multiple-choice VQA. This metric

could significantly contribute to diagnosing the strengths and weaknesses of Image understand-

ing models. Ablation studies on this task show that if posed as a dual problem, iVQA can help

improve significantly on the VQA task.

2.3 Language Prior in VQA

2.3.1 Elevating Image Understanding in VQA [9]

Figure 2.10: Few illustrations of balanced VQA dataset [9]

Analysis of the earlier models in VQA showed that there was a language bias in the orig-

inal dataset, which led to models learning from those biases instead of looking at the image.
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To tackle this problem, VQA 2.0 was released which created complementary pairs to decrease

bias. More specifically, for every image, question and answer triplet (I,Q,A), a complimentary

image I ′ and answer A′ were created. An example of such a complementary pair is illustrated

in fig 2.10.

Supplementary datasets such as Visual7W, CLEVR have been used to fine-tune deep learn-

ing models but VQA 2.0 dataset remains the benchmark dataset for the VQA challenge.

2.3.2 Explicit Bias Discovery in VQA Models [10]

The authors of this paper perform a study to discover the statistical biases present in VQA v2

dataset, which VQA models end up learning from rather than really understanding the context

of the image. In Fig 2.11, we can see how a particular set of words such as ”what, time, day”

in the question always result in the answer as ”afternoon” irrespective of the image. Their work

shows how VQA models are biased by precedents such as gender, or answers which are correct

majority of the time. For eg, the answer to ”What color is the grass?” would be ”green” since

that would the most common general answer.

Figure 2.11: Existing Biases in VQA models [10]

2.4 Consistency of VQA Models

2.4.1 Inconsistency in VQA Models [11]

Recently, Biases have been observed in the VQA dataset, e.g. 87% of questions starting with

”Do you see a ...” has an answer ”yes” and answering ”tennis” to questions ”What sport is ...”

results in 41% accuracy [9]. Many state-of-the-art models have found to be exploiting these

biases instead of ”higher-level reasoning”.
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Figure 2.12: Inconsistent VQA predictions [11]

The authors argue that the evaluation of such models should not be based entirely on

prediction accuracy. Instead, the relation between several predictions should also be taken into

account to measure complete understanding and generalisability i.e., any model answering ”no”

to ”is the rose red?” should be penalized if it answers ”red” to ”What color is the rose?”.

Consider the image shown in fig 2.12, the model answers ”no” when asked about ”Is there

1 bird?” despite counting the number of birds in original question as one. This inconsistency

in QA models indicates that they fails to understand the context and are merely exploiting

the datasets instead of looking into the image. This opens up new avenues along this line of

coherence and consistency in models. Working along these lines, this paper further proposes

to generate implied question-answer pairs from existing dataset and using this to measure the

consistency of any model.

Generating Implications

Let any datapoint from VQA dataset be (I,Q,A) where I,Q and A denotes contextual image,

question and correct answer to that question respectively. Then, logical implications are defined

as (I,Q,A)− > (I,Q′, A′), i.e. the answer A’ to question Q’ can be implied from question-

answer pair Q,A given an image I. The authors presented with rule-based system to generate

these implications. Mainly, three types of ”yes/no” implications are derived :

Logical equivalence: Dependency parser were used to recognize root/subject/object and

to detect auxiliary/copula in a question. To generate logically equivalent implications, the orig-

inal question is formed into a proposition. Adding ”do” auxiliaries or moving auxiliary/copula

can then ask the appropriate ”yes-no” equivalent of the original question. e.g. ”Who painted

the wall? Man” can be converted into ”Did the man paint the wall? yes”.

Necessary Condition: One way of deriving necessary conditions from QA pair is to use

Heuristics such as converting numerical answer questions like ”How many θ” to ask if there

are any θ present in the picture. e.g. ”How many birds? 2” can be molded into ”Are there any
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birds? yes”. It can also be achieved by asking if picture contains the answer nouns. e.g. ”What

room is this? bathroom” implies ”Is there a bathroom in the picture? Yes”.

Mutual exclusion: Antonyms and other plausible answers can be found using Wordnet.

Original noun and its antonym are mutually exclusive, this way the model can be asked if

antonym is present or not. e.g. changing ”Bathroom” to ”Kitchen” in fig2.13. It is implied that

if a room is bathroom it can’t be a kitchen.

Figure 2.13: Generated Implications [11]

To smoothen out these generated implications, 4-gram language model could be used to

add ”a”, ”the”,etc in the questions. Finally, these implications could be used to check the con-

sistency of any QA model. It is observed that models with high accuracy were often performing

poorly in consistency. This proves the correctness of the hypothesis drawn by the authors.

They further used simple data augmentation techniques to improve the models. Training

the models on the original dataset as well as on implied QA pairs substantially improved con-

sistency while doing equally well on accuracy. However, data augmentation is limited by the

kind of implications and could further create other undesirable biases in the system.

2.4.2 SQuINTing at VQA Models [12]

This paper focuses on a small subset of the VQA v2 dataset, the Reasoning split. These type of

questions require some common knowledge of the world apart from the context of the image.

For example, a question ”Are the bananas ripe?” requires the model to look at the color of

the bananas, and also have the knowledge that greenish-yellow means ripe whereas dark green

would mean unripe and yellowish-black would mean stale. Fig 2.14 highlights this problem.
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Figure 2.14: Inconsistency in Reasoning questions [12]

To tackle this problem, the authors created a new dataset which included ~3 sub-questions

like ”Are the bananas greenish-yellow?” for every main reasoning question. With this dataset

and architecture shown in Fig 2.15, the authors of [12] improve consistency - if main question is

answered correct, sub question should be answered correct - of VQA models on the Reasoning

split by 7.8%.

Figure 2.15: SQuINT Architecture [12]

2.4.3 VQA-LOL: VQA under the Lens of Logic [13]

This paper tackles inconsistency among binary i.e. ”yes/no” questions. The authors argue that

VQA models do not perform well on logical composition of questions, even if they answer the

original question correctly. For 2 given questions Q1 and Q2, possible composite question Q∗

is defined as:
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Q∗ = Q′1 �Q′2

where, Q′1 ∈ {Q1,¬Q1}, Q′2 ∈ {Q2,¬Q2}

and connective � ∈ {∨,∧} (2.1)

For example, given a question ”Is the man wearing shoes?”, the model correctly answers

”No”. However, on passing the question ”Is the man not wearing shoes?”, the same model again

answers ”No”. This problem is shown in Fig 2.16.

Figure 2.16: Inconsistency in logical composition of questions [13]

Similar to [12], the authors of [13] also provide their own dataset for tackling this problem.

They form logical composition of binary questions VQA-Compose and VQA-Supplement. They

also propose a method using this dataset which is dedicated to improve accuracy of logical

composition of questions. The method is shown in Fig 2.17.

2.5 Cyclic Training in VQA

Cyclic training for singular modality has been used in the past for tasks such as motion track-

ing [22] and text-based question answering [23]. For multi-modal tasks such as VQA, cyclic

training was first introduced by [14].
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Figure 2.17: VQA-LOL Model Architecture [13]

2.5.1 Cycle-Consistency for Robust VQA [14]

The fundamental foundation of this paper is identifying that VQA models are brittle. Upon

asking a rephrased question, the model answers differently even though the meaning of the

question remains the same. To tackle this problem, the authors make the following significant

contributions -

• A model-independent cycle-consistent training framework.
• New VQA-Rephrasings Dataset
• A consensus score for robustness
• model trained using a cyclic approach achieve state of the art results on VQA 2.0

Figure 2.18: Examples of brittleness of VQA Models [14]

Cyclic Training Scheme

Under the cyclic training scheme, the model is trained to answer a question and also generate

rephrased variations of questions conditioned on the answer. Then, the VQA model again
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Figure 2.19: Cyclic Consistency model-agnostic framework [14]

answers the newly generated questionQ′ and the new answerA” must match the first answerA′

and the ground truth answer A. The advantage of using this scheme is that generating questions

based on the input image, question and answer provides a stronger multimodal understanding

of vision and language.

As seen in Fig 2.19, the VQA module first computesA′ given (Q, I) pair. This predictedA′

along with input (Q, I) pair when passed through the VQG module generates implied (Q′, A′′′).

VQA is used again to compute A” of this (Q′, I) pair. This forms one iteration of the cycle.

Losses on (Q,Q′) will drive the learning process of VQG whereas VQA will be guided by

losses through (A′, A) and (A′′, A′′′) pairs.

Gating Mechanism: Not all the questions generated by the VQG module were coherent

with image, question and answer triplet (I,Q,A). To resolve this, the authors used a similarity

score based on cosine similarity with the original question and filtered the newly generated

questions using a threshold.

Late Activation: The VQA and VQG models under the cyclic scheme are trained sepa-

rately before combining them. If the models are cyclically trained from scratch, they can use

statistical bias to fit on the training data instead of looking at relevant portions of the image for

answering.

Loss Formulation: The overall loss consists of three components. First, the VQA Model

loss LF between the first answer A′ and ground truth answer A. Second, the visual question

generation loss LG between original question Q and generated question Q′. Lastly, the cycle-

consistency loss Lcycle between first answer A′ and second answer A”. The overall loss is

given by -

Losstotal = LF (A,A
′) + λGLG(Q,Q

′) + λCLcycle(A
′, A”) (2.2)
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LF (A,A
′) and LG(A

′, A”) are cross-entropy losses and Lcycle(Q,Q
′) is sequence generation

loss. λG, λC are tunable hyperparameters.

VQA Rephrasings Dataset

The authors used the validation part of the VQA 2.0 dataset and generated three rephrasings

per question. Note that the generated rephrasings must have the same answer as the original

question. The final dataset consists of 162,016 questions spanning 40,504 images.

Figure 2.20: Examples of VQA-Rephrasings dataset [14]

Some examples are shown in fig 2.20. (a) Illustrations from the VQA-Rephrasings dataset.

In each set, The first question - in gray, is the original question from VQA v2.0, the following

questions are the rephrased ones. (b) Examples of questions generated by the VQG module

based on the given answer.

Consensus Score: The authors proposed a consensus score CS(k) to quantify robustness

of models. For every group of questions QP containing m rephrasings, all subsets of size k are

sampled. The consensus score CS(k) is given by the ratio of the number of subsets with all

correct answers to the total sampled subsets of size k.

2.6 Conclusion

In this chapter, we first discussed the progress in VQA over the years. We discussed how supple-

mentary information has been used in VQA to improve accuracy and some variations of VQA.

In addition, we also discussed about the existing language biases in VQA, their inconsistency

and a few recent works in this area.
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The authors of [11] proposed evaluating consistency of these models and a simple data

augmenting technique. However, augmentation requires additional training dataset and it lim-

its the scope of implied questions to this additional dataset. We in-turn propose a generative

model based solution without these limitations. Model based solution for improving consis-

tency has been proposed by [12, 13] but these target only a specific category of questions such

as reasoning or binary questions. Unlike these, we show that our approach works better on the

entire VQA v2.0 dataset rather than a small subset of it. Similar to [14], our framework is also

model-independent and can be used for any VQA architecture. However, their aim was to make

VQA models more robust to linguistic variations through rephrasings. Our aim, through our

approach, is to make the models more consistent to not just rephrasings like in [14], but also on

implications.
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Chapter 3

Approach

During our literature survey, we figured some of the problems faced by Visual Question Answer-

ing systems. Over time, VQA models have evolved to become too complex and intricate. From

stacking more and more attention layers to ensembling tens of models, there is a monotonous

trend of throwing data into more and more complex models and fit it for that dataset making the

model brittle.

As pointed out by [9, 10], like any other dataset, the VQA dataset is full of language

prior. For instance, 39% of questions starting with ”How many” have ”2” as the answer. It was

observed that models performing well were learning to identify these priors instead of looking

into the images. Therefore, trained models were not able to generalize well on-the-wild.

These models were also observed to be inconsistent among predicted answers [11, 13].

It would answer ”no” to ”is there any bike?” despite answering ”1” to ”How many bikes are

there?”. These flaws and shortcomings would limit the scope of such systems to only the train-

ing distributions. Many approaches were tried in the past to tackle these problems through

explanations, captions, and even augmenting the original VQA dataset with implications. How-

ever, we feel that this line of research still holds a lot of potential in Visual Question Answering.

In this chapter, we present a novel approach to solve the problem of inconsistencies

in VQA models using implications. Firstly, we give a formal definition of implication, and

throughout this thesis, we stick to this definition. Then, we design a deep-learning based mod-

ule to automatically generate these implications. Later, we propose a novel cyclic framework to

train any generic VQA model with this designed implication generator module.
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3.1 Implications

Throughout this thesis, implications are defined as questions Q′ which can be answered by

knowing the original question Q and answer A without the knowledge of the context i.e. image

I . For example, given the original QA pair (”What color are the flower pots?”, ”Brown”), one

of the implication would be (”Are the flower pots brown ?”, ”Yes”). As defined by [11], we

categorize these implications into 3 types - logical equivalence, necessary condition and mutual

exclusion.

We use the rule-based approach in [11] to generate implications on entire VQA v2.0

dataset. We will refer to this as our implication dataset. This rule-based method is unable

to create all 3 implications for every QA pair, especially on yes/no type questions. Due to these

restrictions by the rule-based approach, implication dataset contains implications from about

60% of the original dataset. Moreover, all generated implications are of ’yes/no’ type, this

serves as a strong prior for our implication generator module.

Original ’What color is the hydrant?’ ’red’

LogEq ’Is the hydrant red ?’ ’yes’

Mutex ’Is the hydrant green?’ ’no’

Nec ’Is there anything red in the picture?’ ’yes’

Original How many people are in the image’ ’4’

LogEq ’Are 4 people in the image?’ ’yes’

Mutex ’Are 5 people in the image?’ ’no’

Nec ’Are any people in the image?’ ’yes’

We show two examples of our implications dataset, generated by this rule-based approach.

One thing to note is that given the answer to the original question, one doesn’t need to look into

the image for answering the implications. Additional details about the implication dataset can

be found in Chapter 4.
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3.2 Implication Generator Module

The role of this module is to generate implications of a given QA pair. This can be formulated

as a transformation G : (Q,A) −→ Qimp where Qimp is the generated implication. In the VQA

setting, this QA pair is provided by the VQA model. Any generic VQA model takes (Q, I) to

predict A′ where Q is the original question, I is the image and A′ is the predicted answer. Our

implication generator takes as input, the learned question encoding of the original question Q,

the predicted answer scores A′ and a knob (as one hot vector) to select between implication

category.

There has been a thorough study of Natural Language generation in NLP, such as [24–27].

[25] extracts keywords from knowledge graphs and then formulate question generation from

these keywords as Seq2Seq translation problem. [26] tackles the question generation problem

from Reinforcement Learning point of view. They consider generator as an actor trying to max-

imise BLEU score as it’s reward function. [24] propose a Transformer based Seq2Seq pretrain-

ing model which beats the current state-of-art in many summarization and question generation

tasks. To the best of our knowledge, we are the first ones to propose an implication generator

module to improve consistency of any VQA architecture.

Figure 3.1: Detailed architecture of our Implication generator

The implication generation module consists of three linear encoders that transform ques-

tion encoding obtained from VQA model, the predicted answer scores, and the knob to lower

dimensional feature vectors. These three inputs are then added together, and passed through
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a single layered LSTM with hidden size of 1024. This LSTM is trained to generate implica-

tion and optimized by minimizing the negative log likelihood with corresponding ground truth

implication from the implication dataset.

LQ(X,C) = − log(
exp(X[C])∑
j exp(X[j])

) (3.1)

where X is the prediction and C is the ground truth class. One thing to note is that we use

answers scores instead of any particular answer label. This takes question with multiple correct

answers into account. Also, this provides a distribution over the entire set of answers which is

slightly rich and dense signal to learn from.

3.3 Knob Mechanism

Instead of using an implied answer selected randomly from (yes, no) as input to the implication

generator module, we use a three way knob to switch between logical equivalence, necessary

condition and mutual exclusion. This helps the model to have better control over the generated

implications.

In our training dataset, implications from two categories - logical equivalence and neces-

sary condition have ’yes’ as the correct answer. While training the implication generator using

implied answer, we noted that model tends to generate necessary implications when provided

’yes’ as the implied answer. We believe that generating a necessary condition is easier as com-

pared to logical equivalence and without having any control signal, model might collapse to

generate necessary implications all the time. Hence, we provide this control signal in the form

of a one hot vector between the three implication categories.

3.4 Cyclic Framework

To integrate our implication generator module with any VQA module, we use a cyclic frame-

work. The confidence score over answers generated by the VQA module is used by the implica-

tion generator module. The implications are then passed as question to the VQA module, along

with the image I to give implied answer Aimp. This enables the VQA module to learn on these

implications and improve its consistency.
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Training such cyclic framework could be tricky, so inspired by [14], We incorporate gating

mechanism and late activation in our cyclic architecture. Instead of passing all implied ques-

tions, we filter out undesirable implications which have cosine similarity less than threshold

Tsim with the ground truth implication. Also, as part of the late activation scheme, we disable

cycle loss before Aiter.

CosineSimilarity(X1, X2) =
X1 ·X2

‖X1‖2‖X2‖2
(3.2)

We use three loss functions in our architecture, namely VQA loss Lvqa, question loss LQ

and implication loss Limp. Lvqa and Limp are the standard binary cross-entropy (BCE) loss,

between predicted answer A′ and ground truth Agt, and Aimp and Agt
imp respectively. LQ, as

defined above, is the log-likelihood loss between generated implication Qimp and ground truth

implication Qgt
imp. Combining the three losses with their respective weights, we get total loss

Ltot as:

Ltot = Lvqa(A
′, Agt) + λQLQ(Qimp, Q

gt
imp) + λimpLimp(Aimp, A

gt
imp) (3.3)

where λQ and λimp are weights for LQ and Limp respectively. Fig 3.2 shows an abstract

representation of our cyclic framework. Given an input image I and question Q, a VQA model

is used to predict the output answerA′. Then our proposed Implication generator transforms the

original question Q to Qimp with the help of A′ and a control knob. This generated implication

along with the input Image is passed to the VQA model to obtain answerAimp to the implication.

A′ and Aimp are trained with their respective ground truth values.

Figure 3.2: Proposed Model Architecture

Clearly, this proposed framework uses no prior information about the VQA model and

hence can be applied on any generic VQA model. This makes our method model independent.

With our implication generation module, we believe to introduce linguistic variations in the
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original question. To encourage consistent behaviour of the VQA model, we enforce that the

VQA model answers this on-the-fly generated implication correctly.

In the next chapter, we demonstrate several experiments to show the improvement in con-

sistencies of 3 state-of-the-art VQA models after training with our approach. We also believe

that our implication generator module introduces stronger linguistic variations than simple

rephrasings of the original question which should enforce robustness along with consistency.

Thus we discuss our models’ performance on the VQA-Rephrasings dataset as well.

28



Chapter 4

Experiments and Results

In this section we report and compare the results of our model against some past state-of-the-art

VQA baselines. We also show the importance of knob mechanism in our implication generator,

quantitatively. We use the VQA v2.0 dataset for training and evaluating our model’s VQA

performance. The VQA v2.0 training split consists of 443,757 questions on 82,783 images and

the validation split contains 214,354 questions over 40,504 images.

To train and evaluate our implication generator module, we use the implication dataset

made by the rule-based approach in [11]. This dataset consists of 531,091 implied questions in

training split and 255,682 questions for the validation split.

We also evaluate our model’s consistency performance on human annotated VQA Impli-

cations dataset which consists of 30,963 questions. For this dataset, we randomly select 10,500

questions from the VQA v2.0 validation set and create 3 implications(logeq, nec and mutex)

per question.

For robustness performance, we evaluate our models on the VQA Rephrasing dataset pro-

vided by [14]. The dataset consists of 121,512 questions by making 3 rephrasings from 40,504

questions on the VQA-v2 validation set.

4.1 Consistency performance

We define consistency of any VQA model as it’s ability to answer the implications of a question

correctly, if it correctly answers the original question. Implications are generated on the cor-

rectly answered questions from validation VQA v2.0 dataset, and consistency score is calculated

as the fraction of correct predictions to total implications. These generated implications are bi-
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Method Val acc
Consistency(rule-based) Consistency(VQA-Implications)

Log Eq Necc Mut Ex Overall Log Eq Necc Mut Ex Overall

BUTD [28] 63.62 64.3 71.1 59.8 65.3 67.45 72.67 61.31 67.14

BUTD + IC (ours) 62.57 88.5 96.7 77.0 88.1 84.56 83.56 49.01 74.38

BAN [3] 65.37 67.1 77.6 61.1 69.0 65.76 74.27 59.68 66.57

BAN + IC (ours) 64.28 89.3 97.9 79.8 89.6 84.76 84.85 54.23 74.61

Pythia [2] 64.70 69.7 76.4 67.7 70.0 70.66 77.57 64.42 70.89

Pythia + IC (ours) 65.60 88.7 97.6 79.0 88.7 85.66 87.20 56.80 76.55

Table 4.1: Consistency performance on rule-based validation and VQA-Implications

dataset. Consistency is defined as percentage of correctly answered implications, generated

only on correctly answered original questions. All the models trained with our approach out-

perform their respective baselines in both categories, keeping the validation accuracy almost

same.

nary yes/no questions, and hence randomly answering them would give about 50% consistency

score. In order to show the model independent behaviour of our proposed method, we evaluate

consistency of 3 VQA models: BUTD, BAN, Pythia. We use the open-source implementation

of these models for training and evaluation. These models are trained with hyperparameters

proposed in respective papers.

BUTD [28] uses bottom up attention mechanism from pretrained Faster-RCNN features

on the images. Visual Genome [29] dataset is used to pretrain and extract top-K objects in the

images during the preprocessing step. This model won the annual VQA challenge in 2017. For

training BUTD, we used the fixed top-36 objects RCNN features for every image. Their model

achieves 63.62% accuracy on the VQA 2.0 validation split.

BAN [3] uses bilinear model to reduce the computational cost of learning attention distri-

butions, whereby different attention maps are built for each modality. Further, low-rank bilinear

pooling extracts the joint representations for each pair of channels. BAN achieves 65.37% ac-

curacy on the VQA 2.0 validation split.

Pythia [2] extracts image features from detectron also pretrained over visual genome. It

also uses Resnet-152 features and ensembling over 30 models, but we didn’t use these tech-

niques in our study. Glove embeddings are used for question and its implications. Pythia was
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the winning entry of 2018 VQA challenge and achieves 65.59% accuracy on the VQA 2.0 vali-

dation split.

As seen in Table 4.1 All the 3 models achieve an average consistency score of ~70%.

i.e. they fail 30% of the times on implications of correctly predicted questions. Intuitively, Nec-

implication serves as the neccessary condition which the models should know in order to answer

the question. For eg: In order to answer ”How many birds are there?”, they should understand

if ”Are there any birds in the picture ?” Consistency score of ~75% Nec-implication shows the

lack of image understanding in these models. Using our approach, the 3 models achieve ~97%

on Nec-implication.

4.2 Attention Map comparison

As a qualitative analysis, we also compare the attention maps of [2] with our approach. As we

can see in Fig 4.1, the attention maps generated by our approach are significantly better than

those of [2]. Pythia model answers ’black’ for ’what color are the skiis?’ without actually

looking at the skiis. This is further highlighted when the model fails to answer any implica-

tion correctly. After training pythia in our cyclic framework, which encourages it to remain

consistent while answering, it’s attention is focused on the ski and hence it is able to correctly

answer all the implications. This shows that multi-modal understanding of vision and language

is enhanced using our approach. Some more examples are shown in Section 4.7.

Figure 4.1: Qualitative example showing improvement in attention maps for Pythia
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Method Consistency
(rule-based)

Consistency
(VQA-Imp)

BUTD + DA 93.1 74.24

BUTD + IC (ours) 88.1 74.38

BAN + DA 87.6 74.33

BAN + IC (ours) 89.6 74.61

Pythia + DA 89.7 76.19

Pythia + IC (ours) 88.7 76.55

Table 4.2: Consistency comparison of data augmentation vs our approach. VQA-Imp de-

notes our VQA-Implications dataset and DA stands for models finetuned on rule-based training

implications. Even though our models lack on rule-based dataset, they consistently outperform

their respective baselines on the VQA-Implication dataset.

4.3 Data Augmentation

Since we are using an extra dataset (Rule-based implications) apart from VQA-v2 to train our

models, we also compare our models’ consistency with models finetuned with data augmen-

tation. Table 4.2 summarizes the results. Better performance of our models on the human

annotated VQA-Implications dataset shows that models trained with our approach generalize

better and hence would do better than data augmentation in the outside world.

4.4 VQA Rephrasings

We also evaluate our models’ robustness performance on the VQA-Rephrasings dataset intro-

duced in [14]. A rephrasing is defined as a variation of the original question keeping the answer

exactly same. Note that just like the models in [14], we also do not train our models on the VQA-

Rephrasings dataset. The results in Table 4.3 show that training models with our approach also

improves robustness of models. This is consistent with the hypotheses that our models learn

to improve on a stronger linguistic variation than rephrasings by learning on implications and

hence improvement in robustness is expected.

32



Method Val Acc VQA-Rep Acc

BUTD 63.62 53.76

BUTD + IC (ours) 62.57 54.54

BAN 65.37 54.60

BAN + IC (ours) 64.28 55.56

Pythia 64.70 56.49

Pythia + IC (ours) 65.60 57.03

Table 4.3: Robustness performance on VQA-Rephrasing dataset. VQA-Rep denotes VQA-

Rephrasing dataset. All models trained with our approach consistently outperform their respec-

tive baselines.

4.5 Implication Generator Performance

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDEr

Pythia + IC 0.627 0.520 0.443 0.381 0.632 0.288 3.343

Pythia + IC + Knob 0.785 0.715 0.647 0.581 0.795 0.409 5.263

Table 4.4: Implication generation performance on rule-based Implication validation

dataset. Note that using the knob mechanism instead of an implied answer gives significant

improvement.

We train our implication generator on the rule-based training dataset and evaluate our

module on rule-based validation split. We use common question generator metrics such as

BLEU [30], ROUGE-L [31], METEOR [32] and CIDEr [33] scores for evaluation. We also

demonstrate the importance of using the Knob mechanism instead of an implied answer as

input to the module. Table 4.4 shows the results of the implication generator module. Some

examples of generated implications by our module are shown in Section 4.8.
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4.6 Implementation details

For the gating mechanism and late activation, Tsim = 0.9 and Aiter = 5500 for Pythia and

Aiter = 10, 000 for BAN and BUTD. The LSTM hidden state size for implication generator

module is 1024 and Glove embeddings are used of dim = 300. The weights for the losses are

kept as λQ = 0.5 and λimp = 1.5. All models are trained on training split and evaluated on

validation split of VQA v2.0 dataset.

4.7 Examples of Attention Maps
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Figure 4.2: Comparison in Attention maps. Top and bottom rows represent Pythia [2] and

Pythia trained in our framework respectively.
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4.8 Generated Implications by our module

Original What color is the stop light? A: red

LogEq Is the stop light red?

Mutex Is the stop light green?

Nec Is there anything red in the picture?

Original How many chairs can be seen? A: 2

LogEq Can 2 chairs be seen?

Mutex Can 3 chairs be seen?

Nec Can any chairs be seen?

Original What sport are they playing? A: tennis

LogEq Are they playing tennis?

Mutex Are they playing basketball?

Nec Is there a tennis in the picture?

Original What’s on the ground? A: snow

LogEq ’ s on the ground snow?

Mutex ’ s on the ground rain?

Nec Is there snow in the picture?
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Original What is the man holding in his hand? A: phone

LogEq Is the man holding in his hand phone?

Mutex Is the man holding in his hand set?

Nec Is there a phone in the picture?

Original How many people do you see in this scene? A: 0

LogEq Do you see in this photo any people?

Mutex Do you see in this photo 1 person?

Nec Do you see in this photo any people?

Original How many devices are in the picture? A: 5

LogEq Are 3 devices in the picture?

Mutex Are 4 devices in the picture?

Nec Are any devices in this picture?

Original Is this a flat screen TV? A: yes

LogEq Is this a natural screen tv?

Mutex Is this a tv screen?

Nec Is this a natural screen tv?

Table 4.5: Implications generated by our module. As seen in the examples, the module can

replace the answer value in Logical Equivalence type sometimes. Also, for numbered questions

having answer ’0’ and ’yes/no’ questions, the module fails to generate correct implications due

to limitations of the rule-based dataset.
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Chapter 5

Conclusion

In this thesis report, we started off by exploring different state-of-the-art models on Visual

Question Answering. During our survey, we realised the monotonous increase in complexity

of models. In many cases, VQA models were using language priors to perform well on the

training dataset and hence it tends to perform poorly in the wild. We further discussed dif-

ferent approaches in the literature to detect and tackle these problems through new evaluations

schemes such as consistency and robustness. Working along similar lines, we designed a system

dedicated to improving consistency of VQA models.

Our contributions in this thesis are three fold. First, we propose a model-independent

cyclic training scheme for improving consistency of VQA models without degrading their per-

formance. Second, a novel implication generator module for making implications using the

question answer pair and a knob mechanism. Third, a new annotated VQA-Implications dataset

as an evaluation baseline for future works in consistency.

Our implication generator being trained on rule-based implications dataset, has its own

limitations. Firstly, the implications are restricted to 3 types - Logical Equivalence, Necessary

Condition and Mutual Exclusion and all implications are limited to ’yes/no’ type. We believe

that learning on implications not restricted to these limitations should lead to better perfor-

mance. Furthermore, the rule-based implications come from a fixed distribution and are not as

diverse as human annotated implications would be. This limitation can be quantitatively seen

by observing the difference between models’ performance on rule-based and human annotated

implications.
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